博客
关于我
【计算机科学】【2018.08】在深度学习领域中推进分割和无监督学习
阅读量:244 次
发布时间:2019-02-28

本文共 599 字,大约阅读时间需要 1 分钟。

在大尺寸和多模态图像领域,深度学习方法的创新性研究

近年来,深度学习模型在各类任务中带来了显著的改进,引起了广泛关注。然而,这些进步在很大程度上是在有标签的监督环境下实现的,最初的研究重点也主要集中在传统的计算机视觉任务上,如视觉对象识别。

针对大尺寸和多模态图像的特殊应用需求,以及标记训练数据获取的难度,相关领域的研究相对鲜有。我的研究基于以下两个主要方面进行填补:首先,提出专门针对遥感和医学成像应用的分割方法;其次,结合医学影像等高影响领域缺乏标记数据的特点,提出四种无监督深度学习任务:领域适应、聚类、表征学习和零镜头学习。

在分割任务中,我们解决了类别不平衡、缺失数据模式和遥感不确定性建模等关键问题。基于像素连通性的思想,我们进一步开发了一种新型显著性分割方法,这是一个常见的预处理任务。通过将其建模为连通性预测问题,我们在保持模型简洁性的同时,取得了良好的性能。

此外,我们还开发了一种在医学成像领域中的无监督域自适应方法。研究中,我们引入了核方法思想与信息理论学习相结合的聚类方法,取得了显著成效。基于对数据表示的直觉,我们设计了一个核心化的自动编码器。最后,我们针对零镜头学习任务,提出了一种基于改进图卷积神经网络的知识传播方法,在21K类ImageNet数据集上实现了最佳性能。

这些研究成果为大尺寸和多模态图像处理提供了新的解决方案,也为医学影像分析领域带来了重要技术进步。

转载地址:http://cqap.baihongyu.com/

你可能感兴趣的文章
NLP的神经网络训练的新模式
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
nmon_x86_64_centos7工具如何使用
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>
NN&DL4.3 Getting your matrix dimensions right
查看>>
NN&DL4.8 What does this have to do with the brain?
查看>>
No 'Access-Control-Allow-Origin' header is present on the requested resource.
查看>>
NO 157 去掉禅道访问地址中的zentao
查看>>
no available service ‘default‘ found, please make sure registry config corre seata
查看>>
no connection could be made because the target machine actively refused it.问题解决
查看>>
No Datastore Session bound to thread, and configuration does not allow creation of non-transactional
查看>>
No fallbackFactory instance of type class com.ruoyi---SpringCloud Alibaba_若依微服务框架改造---工作笔记005
查看>>
No Feign Client for loadBalancing defined. Did you forget to include spring-cloud-starter-loadbalanc
查看>>
No mapping found for HTTP request with URI [/...] in DispatcherServlet with name ...的解决方法
查看>>
No mapping found for HTTP request with URI [/logout.do] in DispatcherServlet with name 'springmvc'
查看>>